SADLER MATHEMATICS SPECIALIST UNIT 1

WORKED SOLUTIONS

Chapter 5 Geometric proof

Exercise 5A

Question 1

RTP: For the given diagram, $\angle ABC = 90^{\circ}$

Proof:

 $\angle AOC = 180^{\circ}$ $\angle AOC$ is a straight angle as AC is a diameter

 $\angle ABC = 90^{\circ}$ Angle at the centre is twice the angle at the circumference

Alternatively

RTP: For the given diagram, $\angle ABC = 90^{\circ}$

Construction: OB radius

Proof:

OA = OB = OC	Radii of same circle
Let $\angle OBA = \alpha$, $\angle OBC = \beta$	
$\angle OAB = \alpha$	Δ OAB is isosceles
$\angle \text{OCB} = \beta$	\triangle OBC is isosceles
$\angle OAB + \angle ABC + \angle OCB = 180^{\circ}$ $\alpha + \alpha + \beta + \beta = 180^{\circ}$ $2\alpha + 2\beta = 180^{\circ}$	Angle sum in a triangle.

 $\angle AEB = \frac{\alpha^{\circ}}{2}$ $\angle ADB = \frac{\alpha^{\circ}}{2}$

 $\alpha + \beta = 90^{\circ}$ as required

Angle at the centre is twice the angle at the circumference

Angle at the centre is twice the angle at the circumference

 $\angle ACB = \frac{\alpha^{\circ}}{2}$

Angle at the centre is twice the angle at the circumference

 $\therefore \angle AEB = \angle ADB = \angle ACB = \frac{\alpha^{\circ}}{2}$ as required

RTP: For the given diagram, $\angle PQR + \angle PSR = 180^{\circ}$ $\angle QPS + \angle QRS = 180^{\circ}$

Construction: OP, OR radii

Proof:

Let $\angle POR = \alpha$

$$\angle PQR = \frac{\alpha^{\circ}}{2}$$

Angle at the circumference is half the angle at the centre

Angle at the circumference is half the angle at the centre

Reflex $\angle POR = (360 - \alpha)^{\circ}$

Angle sum around a point

$$\angle PQR + \angle PSR = \frac{\alpha^{\circ}}{2} + 180^{\circ} - \frac{a^{\circ}}{2}$$

= 180° as required

Likewise, we can show $\angle QPS + \angle QRS = 180^{\circ}$

RTP:	x = 25 f	or the	diagram	given	diagram
------	-----------	--------	---------	-------	---------

Proof:

 $\angle AOC = 130^{\circ}$ Angle at the centre is twice the angle at the circumferenceOA = OCRadii of the same circle $\angle OAC = \angle OCA = x^{\circ}$ Base angles of an isosceles triangle $\angle OAC + \angle OCA + \angle OAC = 180^{\circ}$ Angle sum in a triangle.x + x + 130 = 180x + x + 130 = 1802x = 50x = 25 as required

Question 5

RTP: Prove x = 25 for the given diagram

AC is a diameter	Chord passing through centre
$\angle ABC = 90^{\circ}$	Angle in a semicircle
$\angle BAC = 25^{\circ}$	Angle sum of a triangle
$\angle BAC = \angle CDB$	Angles in the same segment are congruent
x = 25 as required	

RTP: x = 64 for the given diagram

Given

2 congruent sides

Angle sum of a triangle

Base angles of an isosceles triangle

Angles forming a straight line

Proof:

 \triangle ABC is isosceles

 $\angle BAC = \angle BCA = 58^{\circ}$

 $\angle ABC = 180 - 116 = 64^{\circ}$

 $\angle ADC = 116^{\circ}$

 $\angle CDE + \angle CDA = 180^{\circ}$ x + 116 = 180x = 64 as required

Question 7

RTP: Prove x = 158 for the given diagram

Proof:

 $\angle DOB = 92^{\circ}$

Angle at the centre is twice the angle at the circumference

Opposite angles of a cyclic quadrilateral are supplementary

 $\angle ODC + \angle DCB + \angle CBO + \angle BOD = 360^{\circ}$

Angle sum of a quadrilateral

 $\angle DCB = 360 - 60 - 50 - 92$

=158 as required

RTP: x = 24 for the given diagram

А

0

Proof:

$\angle ABE = 62^{\circ}$	Angles forming a straight line are supplementary	
$\angle AEB = 66^{\circ}$	Angle sum of a triangle	
$\angle BED = 114^{\circ}$	Angles forming a straight line are supplementary	
$\angle BCD = 66^{\circ}$	Opposite angles of a cyclic quadrilateral are supplementary	
	Angles forming a straight line are supplementary	
$\angle FCB + \angle BCD + \angle DCG = 1$ 90+66+x=1	80°Angles forming a straight line80	

x = 24 as required

Question 9

RTP: x = 70 for the given diagram

Proof:

OC = OD	Radii of same circle	20°
$\angle \text{OCD} = 20^{\circ}$	Base angles of isosceles triangle	F D x°
$\angle \text{COD} = 140^{\circ}$	Angle sum of a triangle	F
$\angle \text{COB} = 40^{\circ}$	Angles forming a straight line are supplem	entary
$\angle \text{OBA} = 40^{\circ}$	Alternate angle to ∠COB	
$\angle BAO = 90^{\circ}$	Angle in a semicircle	
$\angle ADB = 50^{\circ}$	Angle sum of a triangle	
$\angle ADC = 70^{\circ}, \ \angle EDF = 70^{\circ}$	as required Vertically opposite angle to	∠ADC

© Cengage Learning Australia Pty Ltd 2019

В

С

RTP: $\angle OBA = \angle OBC = 90^{\circ}$ in the given diagram

Construction: OA, OC radii

Proof:

OA = OCRadii of same circle AB = CBGiven OB Common $\triangle OBA \cong \triangle OBC$ SSS congruence Corresponding angles in congruent triangles $\angle OBA = \angle OBC$ $\angle OBA + \angle OBC = 180^{\circ}$ $2 \times \angle OBA = 180^{\circ}$ $\angle OBA = 90^{\circ}$

 $\angle OBC = 90^{\circ}$ as required

Angles forming a straight line are supplementary

Question 11

RTP: DE = EF in the given diagram

Construction: OD, OF radii

$\angle OED = \angle OEF = 90^{\circ}$	Angles on a straight line D
OD = OF	Radii of the same circle
OE	Common
∆OED ≅∆OEF	RHS congruence
\therefore DE = FE as required	Corresponding sides in congruent triangles

RTP: JK passes through the centre of the circle for the given diagram Construction: Let P be a point on JK

Proof:

GI = HI

ΡI

- $\angle PIG = \angle PIH$ Given

∆PGI≅∆PHI

PI = PG Corresponding sides in congruent triangles

RHS congruence

Common

Given

For some particular P, PG and PI must equal the radius of the circle and therefore P must be the centre of the circle. As P is on JK, JK must pass through the centre of the circle. (as required)

Question 13

RTP: $\angle AOB = \angle COD$ in the given diagram

Constructions: OA, OB, OC and OD, radii

Proof:

OA = OCRadii of same circleOB = ODRadii of same circleAB = CDGiven $\triangle OAB \cong \triangle OCD$ SSS congruency

Κ

╢

J

Η

G

 $\angle AOB = \angle COD$ as required

ired Corresponding angles in congruent triangles

RTP: AB = CD in the given diagram

Constructions: OA, OB, OC and OD, radii

OA = OC	Radii of same circle
OB = OD	Radii of same circle
$\angle AOB = \angle COD$	Given
∆OAB ≅∆OCD	SAS congruency
AB = CD as required	Corresponding sides in congruent triangles

RTP: $AE \times EB = DE \times EC$ for the given diagram

Constructions: AD, CB chords

Proof:

$\angle DAB = \angle DCB$	Angles in the same segment
$\angle ADC = \angle ABC$	Angles in the same segment D
$\angle AED = \angle CEB$	Vertically opposite angles
$\triangle AED \sim \triangle CEB$	AA similarity
$\frac{DE}{BE} = \frac{EA}{EC}$	Corresponding sides in similar triangles are in the same ratio

 $\therefore AE \times EB = DE \times EC$ as required

From the above result:

$$AB \times BC = DB \times BE$$
$$4 \times 6 = x \times 8$$
$$24 = 8x$$
$$x = 3$$
$$ST \times TQ = PT \times TR$$
$$5 \times 6 = 10 \times TR$$
$$30 = 10 \times TR$$
$$TR = 3$$
$$y = PR$$
$$= PT + TR$$
$$= 10 + 3$$
$$= 13$$

С

В

Е

А

Exercise 5B

Question 1

RTP: x = 155 for the given diagram

Proof:

$\angle \text{OCB} = 90^{\circ}$	Angle between tangent and radius

 $\angle \text{OCD} = 90 - 65 = 25^{\circ}$

 $\triangle OCD$ is isosceles OC, OD radii of same circle

 $\angle ODC = \angle OCD = 25^{\circ}$ Base angles of isosceles triangle

 $\angle ODC + \angle EDC = 180^{\circ}$ Angles forming a line

 \angle EDC = 180 - 25 = 155° as required

Question 2

RTP: x = 62 for the given diagram

Proof:

$\angle \text{OCB} = 90^{\circ}$	Angle between tangent and radius
$\angle \text{OCD} = 90 - 62 = 28^{\circ}$	С
\triangle OCD is isosceles	OC, OD radii of same circle
$\angle ODC = \angle OCD = 28^{\circ}$	Base angles of isosceles triangle
$\angle \text{COD} = 124^{\circ}$	Angle sum of triangle
\angle CED = 62° as required	Angle at the centre is twice the angle at the circumference

Е

x°

Ο

D

В

62°

a RTP: PA = PB for the given diagram Constructions: CA, CB radii, CP

Proof:

b

$\angle CAP = \angle CBP = 90$	0	Angle between radius and tangent
CA = CB		Radii of same circle
СР		Common
$\triangle CAP \cong \triangle CBP$		RHS Congruency
PA = PB as required		Corresponding sides in congruent triangles
RTP: PC bisects $\angle A$	APB	
From part a ,		
$\triangle CAP \cong \triangle CBP$	RHS Congruency	
$\angle CPA = \angle CPB$	Corresponding angles in congruent triangles	

PC bisects \angle APB as required.

D RTP: \angle DBA $\cong \angle$ DAE for the given diagram B Constructions: AO, OD radii Proof: A Angle at the centre is twice the angle at the circumference $\angle AOD = 2x^{\circ}$ OA = ODRadii of the same circle \triangle OAD is isosceles Base angles of isosceles triangle $\angle OAD = \angle ODA$ $\angle OAD = \frac{180 - 2x}{2} = (90 - x)^{\circ}$ Angle sum of triangle Angle between radius and tangent $\angle OAE = 90^{\circ}$ $\angle OAD + \angle DAE = \angle OAE$

 $\angle DAE = 90 - (90 - x) = x^{\circ}$ as required

E

RTP: x = 125 in the given diagram

Proof:

AB = AC Tangents from the same point are congruent

 \triangle ABC is isosceles

$\angle ACB = \angle ABC$	Base angles of isosceles triangle
$\angle ACB = \frac{180 - 70}{2}$ $= 55^{\circ}$	Angle sum of triangle
$\angle ACB + \angle BCE = 180^{\circ}$	Angles forming a line

C C

 $\angle BCE = 180 - 55 = 125^{\circ}$ as required

Question 6

RTP: x = 110 in the given diagram

Proof:

$\Delta B - \Delta D$	Tangents from t	he same r	oint are o	ongruent
AD - AD	Tangents nom t	ne same p		ongruent

 \triangle ABD is isosceles

 $\angle ADB = \angle ABD$ Base angles of isosceles triangle

 $\angle ABD = \frac{180 - 80}{2} = 50^{\circ}$

 $\angle ABD + \angle DBG + \angle GBC = 180^{\circ}$

 $\angle \text{DBG} = 180 - 50 - 60 = 70^{\circ}$

 $x = 110^{\circ}$ as required

Opposite angles in a cyclic quadrilateral

Angle sum of triangle

Angles forming a line

© Cengage Learning Australia Pty Ltd 2019

RTP: x = 40 in the given diagram

Constructions: OD, OB radii

$\angle BOD = 140^{\circ}$	Angle at the centre is twice the angle at the circumference
$\triangle ODB$ is isosceles	OB, OD radii of the same circle
$\angle ODB = \angle OBC$	Base angles of an isosceles triangle
$\angle \text{OBD} = \frac{180 - 140}{2}$ $= 20^{\circ}$	Angle sum of triangle
$\angle OBA = 90^{\circ}$	Angle between radius and tangent
$\angle \text{DBA} = 90 - 20 = 70^{\circ}$	
AB = AD	Tangents from the same point are congruent
\triangle ADB is isosceles	
$\angle BDA = \angle DBA = 70^{\circ}$	Base angles of an isosceles triangle
$\angle BAD = 180 - (2 \times 70)$ $= 40^{\circ}$	Angle sum of triangle

RTP: x = 72 for the given diagram

Proof:

$\angle CDE + \angle ADE = 180^{\circ}$	Angles forming a line
$\angle CDE = 90^{\circ}$	
$\angle DCE = 72^{\circ}$	Angle sum of triangle
$\angle CFE = 72^{\circ}$	Angle in alternate segment

Question 9

RTP: x = 40 for the given diagram

$\angle CPG = 108^{\circ}$	Angle at the centre is twice the angle at the circumference
$\angle BCP = 90^{\circ}$	Angle between tangent and radius
$\angle CBO = 90^{\circ}$	Angle between tangent and radius
$\angle BOF = 360 - (100 + 2 \times 90)$ = 80°	Angle sum of quadrilateral
$\angle BEF = 40^{\circ}$ as required	Angle at the circumference is half the angle at the centre

RTP: x = 25 in the given diagram

Proof:

 $\angle BEG = 85^{\circ}$

 $\angle GBE = 25^{\circ}$

 $\angle \text{DEG} = 25^{\circ}$

 \angle FEH = 25° as required

Angle in alternate segment Angle sum of triangle Angle in alternate segment Vertically opposite angles

RTP: $MT^2 = MA \times MB$ in the given diagram

Constructions: AT, BT

Proof:

Let $\angle TMA = \alpha, \angle MTA = \beta$

$\angle TBA = \beta^{\circ}$	Angle in alternate segment
$\angle TMA \sim \angle BMT$	AA similarity
$\frac{\mathrm{MT}}{\mathrm{MB}} = \frac{\mathrm{MA}}{\mathrm{MT}}$	Corresponding sides in similar triangles are in the same ratio

 $MT^2 = MA \times MB$ as required

RTP: $MA \times MB = MC \times MD$ in the given diagram

Constructions: AD, BC

Proof:

In \triangle MCB and \triangle MAD

$\angle MBC = \angle MDA$	Angles in same segment
∠AMC	Common
Δ MCB ~ Δ MAD	AA similarity

 $\frac{\text{MB}}{\text{MD}} = \frac{\text{MC}}{\text{MA}}$ Corresponding sides in similar triangles are in the same ratio

 $MA \times MB = MC \times MD$ as required

© Cengage Learning Australia Pty Ltd 2019

 $^{13}C_8 = 1287$ 8! = 40 320

Question 2

 ${}^{3}C_{2} \times {}^{6}C_{4} = 45$

Question 3

 ${}^{2}C_{2} \times {}^{8}C_{4} = 70$ ${}^{3}C_{1} \times {}^{5}C_{3} = 30$

Question 4

 $\frac{\sin 30^{\circ}}{350} = \frac{\sin \alpha}{50}$ $\alpha = 4^{\circ}$

Missing angle in triangle: 166°

Bearing of aircraft 166°.

 $\sin 20^{\circ} = \frac{|\mathbf{i}|}{10000}$ $|\mathbf{i}| = 10000 \times \sin 20^{\circ}$ = 3420 $\cos 20^{\circ} = \frac{|\mathbf{j}|}{10000}$ $|\mathbf{j}| = 10000 \times \cos 20^{\circ}$ = 9397

The 10 000N downward force is (-3400**i** - 9400**j**) N

b The horizontal force, **i** is being resisted by the brakes, \therefore 3400 N

Question 6

6 out of 10 if I remove one mark per error.

Error 1: AD = DC should read AD = CD to match corresponding vertices

Error 2: The line stating congruence has named vertices in the incorrect order.

It should read Thus $\triangle ABD$ is congruent to $\triangle CBD$.

Error 3: The reason for congruence is incorrect, it should be SAS.

Error 4: The link between congruence and isosceles is not clearly established.

A statement similar to AB = CB (Corresponding sides in congruent triangles)

needs to be added.

а	$\overrightarrow{AC} = 2\mathbf{b}$
b	$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF}$
	$=\mathbf{b}+\frac{1}{3}\mathbf{b}$
	$=\frac{4}{3}\mathbf{b}$
С	$\overrightarrow{\mathrm{DC}} = \overrightarrow{\mathrm{DB}} + \overrightarrow{\mathrm{BC}}$
	= a + b
d	$\overrightarrow{\mathrm{EC}} = \overrightarrow{\mathrm{ED}} + \overrightarrow{\mathrm{DC}}$
	$= \mathbf{b} + \mathbf{a} + \mathbf{b}$
	= a +2 b
е	$\overrightarrow{\mathrm{EG}} = \overrightarrow{\mathrm{ED}} + \frac{1}{2}\overrightarrow{\mathrm{DC}}$
	$=\mathbf{b}+\frac{1}{2}(\mathbf{a}+\mathbf{b})$
	$=\frac{1}{2}\mathbf{a}+\frac{3}{2}\mathbf{b}$

f
$$\overrightarrow{GF} = \overrightarrow{GC} + \overrightarrow{CF}$$

$$= \frac{1}{2}\overrightarrow{DC} + \frac{2}{3}\overrightarrow{CB}$$

$$= \frac{1}{2}(\mathbf{a} + \mathbf{b}) + \frac{2}{3}(-\mathbf{b})$$

$$= \frac{1}{2}\mathbf{a} - \frac{1}{6}\mathbf{b}$$

$$\overrightarrow{GH} + \overrightarrow{HC} = \overrightarrow{GC}$$

$$h\overrightarrow{GF} + k\overrightarrow{EC} = \frac{1}{2}\overrightarrow{DC}$$

$$h(\frac{1}{2}\mathbf{a} - \frac{1}{6}\mathbf{b}) + k(\mathbf{a} + 2\mathbf{b}) = \frac{1}{2}(\mathbf{a} + \mathbf{b})$$

$$\frac{h}{2}\mathbf{a} - \frac{h}{6}\mathbf{b} + k\mathbf{a} + 2k\mathbf{b} = \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$$

$$\frac{h}{2}\mathbf{a} + k\mathbf{a} - \frac{1}{2}\mathbf{a} = \frac{1}{2}\mathbf{b} + \frac{h}{6}\mathbf{b} - 2k\mathbf{b}$$

$$\left(\frac{h}{2} + k - \frac{1}{2}\right)\mathbf{a} = \left(\frac{1}{2} + \frac{h}{6} - 2k\right)\mathbf{b}$$

As **a** and **b** are not parallel vectors the only way for this statement to be true is if the coefficients of **a** and **b** equal zero.

$$\frac{h}{2} + k - \frac{1}{2} = 0 \implies k = \frac{1}{2} - \frac{h}{2}$$

$$\frac{1}{2} + \frac{h}{6} - 2k = 0$$

$$\frac{1}{2} + \frac{h}{6} - 2\left(\frac{1}{2} - \frac{h}{2}\right) = 0$$

$$\frac{1}{2} + \frac{h}{6} - 1 + h = 0$$

$$\frac{7h}{6} = \frac{1}{2}$$

$$7h = 3$$

$$h = \frac{3}{7}$$

$$k = \frac{1}{2} - \frac{h}{2} = \frac{1}{2} - \frac{3}{14} = \frac{2}{7}$$